The electrical properties of Copperweld®/Cu and Copperweld® conductors for determining the electrical performance of transmission and distribution lines are listed in the accompanying tables. These tables include values of resistance, inductive and shunt capacitive reactances, and the geometric mean radius, together with the approximate ampacity for 60 hertz frequency.

RESISTANCE
The resistance of Copperweld®/Cu conductors is shown for temperatures of 25°C. and 50°C. and those of Copperweld® conductors for 25°C. and 75°C. The 25°C. values are for small currents, approximately equivalent to 1000 amperes per square inch of copper conductance. The higher temperature values are for heavy currents, or approximately 75% of the ampacities shown in the table. Resistance figures are based on 97.5% conductivity copper.

INDUCTIVE AND CAPACITIVE REACTANCE
The inductive reactances are given for the conductors at one foot spacing with supplementary tables of adders for spacings greater than one foot. The basic values are tabulated in Table 1 and 4 as x_a (Inductive). The adders x_d are the same for all conductors and are tabulated in Table 2. As the inductive reactances are substantially independent of the current these values are applicable for either small or large current. The relation between the inductive reactance for one foot spacing and geometric mean radius is shown in the following formulas:

$$x_a = 0.2794 \log_{10} \frac{1}{G.M.R.}$$

$$G.M.R. = \text{Conductor radius in feet}$$

$$\text{Antilog}_{10} 0.1083 \mu$$

$$x_{int} = 0.03026$$

where: x_a = Inductive reactance (60 hertz) for 1 ft. spacing — ohms per conductor per mile.

$G.M.R. = \text{Geometric mean radius in feet.}$

$\mu = \text{Effective permeability ratio of conductor.}$

$x_{int} = \text{Internal reactance (60 hertz).}$

The capacitive reactances are also given for conductors at one foot spacing with supplementary tables for spacings greater than one foot. Basic values for each conductor are tabulated in Tables 1 and 4 as $x_{a'}$ (Capacitive) and the capacitive reactance adders x'_{d} are tabulated in Table 3.

AMPACITY
The ampacities are in accordance with the Schurig and Frick formula, assuming a two foot per second cross wind and an emissivity factor of 0.5 (average tarnished surface). The data for Copperweld®/COPPER conductors are based on a 50°C. rise over a 25°C. ambient or a maximum temperature of 75°C. For Copperweld conductors, the temperature rise is 100°C. over a 25°C. ambient or a maximum temperature of 125°C. These maximum temperatures represent permissible values to which the conductor can be subjected, without annealing or loss of strength.

NOTE: Properties noted in these data sheets are typical values for standard applications. If your application requires performance values beyond those noted, please contact Copperweld’s Engineering Support Center at engineering@copperweld.com or +1.931.433.7177. Material selection, varying composition and processing conditions all provide flexibility in how Copperweld can deliver exactly the product you need. Bimetallic conductors from Copperweld offer many distinct advantages, and our engineering team works in concert with our clients to determine the proper components for the stringent requirements of their products.
Table 1: Electrical Characteristics of Copperweld/Copper Conductors

<table>
<thead>
<tr>
<th>CONDUCTOR</th>
<th>D.C.</th>
<th>60 Hertz</th>
<th>D.C.</th>
<th>60 Hertz</th>
<th>(r_e) at 50°C (122°F) CURRENT-APPROX. 75% OF AMPACITY</th>
<th>(x_a') INDUCTIVE at 60 Hz</th>
<th>(x_c') CAPACITIVE at 60 Hz</th>
<th>(x_d') at 60 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td>350 E</td>
<td>0.1658</td>
<td>0.1812</td>
<td>0.1812</td>
<td>0.204</td>
<td>0.463</td>
<td>1.014</td>
<td>0.02200</td>
<td>660</td>
</tr>
<tr>
<td>350 EK</td>
<td>0.1658</td>
<td>0.1705</td>
<td>0.1812</td>
<td>0.1882</td>
<td>0.450</td>
<td>1.034</td>
<td>0.02450</td>
<td>680</td>
</tr>
<tr>
<td>300 E</td>
<td>0.1934</td>
<td>0.209</td>
<td>0.211</td>
<td>0.235</td>
<td>0.473</td>
<td>1.037</td>
<td>0.02040</td>
<td>600</td>
</tr>
<tr>
<td>300 EK</td>
<td>0.1934</td>
<td>0.1981</td>
<td>0.211</td>
<td>0.219</td>
<td>0.460</td>
<td>1.057</td>
<td>0.02270</td>
<td>610</td>
</tr>
<tr>
<td>250 E</td>
<td>0.232</td>
<td>0.248</td>
<td>0.254</td>
<td>0.279</td>
<td>0.484</td>
<td>1.064</td>
<td>0.01859</td>
<td>540</td>
</tr>
<tr>
<td>250 EK</td>
<td>0.232</td>
<td>0.237</td>
<td>0.254</td>
<td>0.261</td>
<td>0.471</td>
<td>1.084</td>
<td>0.02070</td>
<td>540</td>
</tr>
<tr>
<td>4/0 E</td>
<td>0.274</td>
<td>0.290</td>
<td>0.300</td>
<td>0.326</td>
<td>0.493</td>
<td>1.088</td>
<td>0.01711</td>
<td>480</td>
</tr>
<tr>
<td>4/0 EK</td>
<td>0.274</td>
<td>0.298</td>
<td>0.299</td>
<td>0.342</td>
<td>0.517</td>
<td>1.110</td>
<td>0.01409</td>
<td>460</td>
</tr>
<tr>
<td>4/0 F</td>
<td>0.274</td>
<td>0.279</td>
<td>0.300</td>
<td>0.308</td>
<td>0.481</td>
<td>1.119</td>
<td>0.01903</td>
<td>490</td>
</tr>
<tr>
<td>4/0 F</td>
<td>0.273</td>
<td>0.287</td>
<td>0.299</td>
<td>0.322</td>
<td>0.505</td>
<td>1.120</td>
<td>0.01558</td>
<td>470</td>
</tr>
<tr>
<td>3/0 E</td>
<td>0.346</td>
<td>0.361</td>
<td>0.378</td>
<td>0.407</td>
<td>0.508</td>
<td>1.123</td>
<td>0.01521</td>
<td>420</td>
</tr>
<tr>
<td>3/0 E</td>
<td>0.344</td>
<td>0.372</td>
<td>0.377</td>
<td>0.428</td>
<td>0.541</td>
<td>1.118</td>
<td>0.01156</td>
<td>410</td>
</tr>
<tr>
<td>3/0 G</td>
<td>0.344</td>
<td>0.369</td>
<td>0.377</td>
<td>0.423</td>
<td>0.531</td>
<td>1.137</td>
<td>0.01254</td>
<td>400</td>
</tr>
<tr>
<td>3/0 EK</td>
<td>0.346</td>
<td>0.351</td>
<td>0.378</td>
<td>0.386</td>
<td>0.495</td>
<td>1.143</td>
<td>0.01697</td>
<td>420</td>
</tr>
<tr>
<td>3/0 F</td>
<td>0.344</td>
<td>0.358</td>
<td>0.377</td>
<td>0.401</td>
<td>0.519</td>
<td>1.155</td>
<td>0.01388</td>
<td>410</td>
</tr>
<tr>
<td>2/0 K</td>
<td>0.434</td>
<td>0.466</td>
<td>0.475</td>
<td>0.535</td>
<td>0.570</td>
<td>1.129</td>
<td>0.00912</td>
<td>360</td>
</tr>
<tr>
<td>2/0 J</td>
<td>0.434</td>
<td>0.462</td>
<td>0.475</td>
<td>0.530</td>
<td>0.555</td>
<td>1.152</td>
<td>0.01029</td>
<td>350</td>
</tr>
<tr>
<td>2/0 G</td>
<td>0.434</td>
<td>0.459</td>
<td>0.475</td>
<td>0.525</td>
<td>0.545</td>
<td>1.171</td>
<td>0.01119</td>
<td>350</td>
</tr>
<tr>
<td>2/0 F</td>
<td>0.434</td>
<td>0.448</td>
<td>0.475</td>
<td>0.501</td>
<td>0.533</td>
<td>1.189</td>
<td>0.01235</td>
<td>350</td>
</tr>
<tr>
<td>1/0 K</td>
<td>0.548</td>
<td>0.579</td>
<td>0.599</td>
<td>0.664</td>
<td>0.584</td>
<td>1.164</td>
<td>0.00812</td>
<td>310</td>
</tr>
<tr>
<td>1/0 J</td>
<td>0.548</td>
<td>0.576</td>
<td>0.599</td>
<td>0.659</td>
<td>0.569</td>
<td>1.186</td>
<td>0.00917</td>
<td>310</td>
</tr>
<tr>
<td>1/0 G</td>
<td>0.548</td>
<td>0.573</td>
<td>0.599</td>
<td>0.654</td>
<td>0.559</td>
<td>1.206</td>
<td>0.00996</td>
<td>310</td>
</tr>
<tr>
<td>1/0 F</td>
<td>0.548</td>
<td>0.562</td>
<td>0.599</td>
<td>0.627</td>
<td>0.547</td>
<td>1.224</td>
<td>0.01099</td>
<td>310</td>
</tr>
<tr>
<td>1N</td>
<td>0.691</td>
<td>0.726</td>
<td>0.755</td>
<td>0.832</td>
<td>0.614</td>
<td>1.171</td>
<td>0.00638</td>
<td>280</td>
</tr>
<tr>
<td>1K</td>
<td>0.691</td>
<td>0.722</td>
<td>0.755</td>
<td>0.825</td>
<td>0.598</td>
<td>1.198</td>
<td>0.00723</td>
<td>270</td>
</tr>
<tr>
<td>1J</td>
<td>0.691</td>
<td>0.719</td>
<td>0.755</td>
<td>0.820</td>
<td>0.583</td>
<td>1.221</td>
<td>0.00817</td>
<td>270</td>
</tr>
<tr>
<td>1G</td>
<td>0.691</td>
<td>0.716</td>
<td>0.755</td>
<td>0.815</td>
<td>0.573</td>
<td>1.240</td>
<td>0.00887</td>
<td>260</td>
</tr>
<tr>
<td>1F</td>
<td>0.691</td>
<td>0.705</td>
<td>0.755</td>
<td>0.786</td>
<td>0.561</td>
<td>1.258</td>
<td>0.00980</td>
<td>270</td>
</tr>
</tbody>
</table>

* Resistance at 50°C, total temperature, based on ambient of 25°C plus 25°C rise due to heating effect of current. The approximate magnitude of current necessary to produce the 25°C rise is 75% of the “Approximate Ampacity at 60 Hertz”

† Based on a conductor temperature of 75°C and an ambient of 25°C.

*Note: Total inductive reactance equals inductive reactance for one foot plus adder for conductor separation.

Table 2: Inductive Reactance Adders for Separations Greater Than One Foot

<table>
<thead>
<tr>
<th>feet</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0.084</td>
<td>0.133</td>
<td>0.168</td>
<td>0.195</td>
<td>0.217</td>
<td>0.236</td>
<td>0.252</td>
<td>0.267</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.279</td>
<td>0.291</td>
<td>0.302</td>
<td>0.311</td>
<td>0.320</td>
<td>0.329</td>
<td>0.336</td>
<td>0.344</td>
<td>0.351</td>
<td>0.357</td>
</tr>
<tr>
<td>20</td>
<td>0.364</td>
<td>0.369</td>
<td>0.375</td>
<td>0.380</td>
<td>0.386</td>
<td>0.391</td>
<td>0.395</td>
<td>0.400</td>
<td>0.404</td>
<td>0.409</td>
</tr>
<tr>
<td>30</td>
<td>0.413</td>
<td>0.417</td>
<td>0.421</td>
<td>0.424</td>
<td>0.428</td>
<td>0.431</td>
<td>0.435</td>
<td>0.438</td>
<td>0.441</td>
<td>0.445</td>
</tr>
</tbody>
</table>

Note: Total inductive reactance equals inductive reactance for one foot plus adder for conductor separation.

Impedance (line to neutral) in Ω/conductor for line N miles long: \(Z = N (r_a + j (x_a + x_d)) \)

www.copperweld.com
Table 1 (Continued)

Electrical Characteristics of Copperweld/Copper Conductors

<table>
<thead>
<tr>
<th>Conductor</th>
<th>Resistance-Ohms Per Conductor Per Mile</th>
<th>Reactance Per Conductor Per Mile</th>
<th>Geometric Mean Radius</th>
<th>Approx. Ampacity†</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D.C. 60 Hertz</td>
<td>D.C. 60 Hertz</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>x<sup>i</sup><sub>1</sub> Inductive Ω at 60 Hz</td>
<td>x<sup>c</sup><sub>1</sub> Capacitive MΩ at 60 Hz</td>
<td>(feet)</td>
</tr>
<tr>
<td>2P</td>
<td>0.871 0.909</td>
<td>0.952 1.040</td>
<td>0.643 0.1172</td>
<td>0.00501 250</td>
</tr>
<tr>
<td>2N</td>
<td>0.871 0.906</td>
<td>0.952 1.035</td>
<td>0.627 0.1205</td>
<td>0.00568 240</td>
</tr>
<tr>
<td>2K</td>
<td>0.871 0.902</td>
<td>0.952 1.028</td>
<td>0.612 0.1232</td>
<td>0.00644 240</td>
</tr>
<tr>
<td>2J</td>
<td>0.871 0.899</td>
<td>0.952 1.022</td>
<td>0.598 0.1255</td>
<td>0.00727 230</td>
</tr>
<tr>
<td>2A</td>
<td>0.869 0.882</td>
<td>0.950 0.979</td>
<td>0.592 0.1241</td>
<td>0.00763 240</td>
</tr>
<tr>
<td>2G</td>
<td>0.871 0.896</td>
<td>0.952 1.016</td>
<td>0.587 0.1275</td>
<td>0.00790 230</td>
</tr>
<tr>
<td>2F</td>
<td>0.871 0.885</td>
<td>0.952 0.985</td>
<td>0.575 0.1292</td>
<td>0.00873 230</td>
</tr>
<tr>
<td>3P</td>
<td>1.098 1.136</td>
<td>1.200 1.296</td>
<td>0.657 0.1207</td>
<td>0.00445 220</td>
</tr>
<tr>
<td>3N</td>
<td>1.098 1.133</td>
<td>1.200 1.289</td>
<td>0.641 0.1239</td>
<td>0.00506 210</td>
</tr>
<tr>
<td>3K</td>
<td>1.098 1.129</td>
<td>1.200 1.281</td>
<td>0.626 0.1266</td>
<td>0.00574 210</td>
</tr>
<tr>
<td>3J</td>
<td>1.098 1.126</td>
<td>1.200 1.275</td>
<td>0.611 0.1289</td>
<td>0.00648 200</td>
</tr>
<tr>
<td>3A</td>
<td>1.096 1.109</td>
<td>1.198 1.229</td>
<td>0.606 0.1275</td>
<td>0.00679 210</td>
</tr>
<tr>
<td>4P</td>
<td>1.385 1.423</td>
<td>1.514 1.616</td>
<td>0.671 0.1241</td>
<td>0.00397 190</td>
</tr>
<tr>
<td>4N</td>
<td>1.385 1.420</td>
<td>1.514 1.610</td>
<td>0.655 0.1274</td>
<td>0.00451 180</td>
</tr>
<tr>
<td>4D</td>
<td>1.382 1.399</td>
<td>1.511 1.542</td>
<td>0.628 0.1256</td>
<td>0.00566 190</td>
</tr>
<tr>
<td>4A</td>
<td>1.382 1.395</td>
<td>1.511 1.545</td>
<td>0.620 0.1310</td>
<td>0.00604 180</td>
</tr>
<tr>
<td>5P</td>
<td>1.747 1.785</td>
<td>1.909 2.02</td>
<td>0.685 0.1275</td>
<td>0.00353 160</td>
</tr>
<tr>
<td>5D</td>
<td>1.742 1.759</td>
<td>1.905 1.939</td>
<td>0.642 0.1290</td>
<td>0.00504 160</td>
</tr>
<tr>
<td>5A</td>
<td>1.742 1.755</td>
<td>1.905 1.941</td>
<td>0.634 0.1345</td>
<td>0.00538 160</td>
</tr>
<tr>
<td>6D</td>
<td>2.20 2.22</td>
<td>2.40 2.44</td>
<td>0.656 0.1325</td>
<td>0.00449 140</td>
</tr>
<tr>
<td>6A</td>
<td>2.20 2.21</td>
<td>2.40 2.44</td>
<td>0.648 0.1379</td>
<td>0.00479 140</td>
</tr>
<tr>
<td>6C</td>
<td>2.20 2.21</td>
<td>2.40 2.44</td>
<td>0.651 0.1386</td>
<td>0.00469 130</td>
</tr>
<tr>
<td>7D</td>
<td>2.77 2.79</td>
<td>3.03 3.07</td>
<td>0.670 0.1359</td>
<td>0.00400 120</td>
</tr>
<tr>
<td>7A</td>
<td>2.77 2.78</td>
<td>3.03 3.07</td>
<td>0.658 0.1388</td>
<td>0.00441 120</td>
</tr>
<tr>
<td>8D</td>
<td>3.49 3.51</td>
<td>3.82 3.86</td>
<td>0.684 0.1393</td>
<td>0.00356 110</td>
</tr>
<tr>
<td>8A</td>
<td>3.49 3.51</td>
<td>3.82 3.87</td>
<td>0.672 0.1422</td>
<td>0.00394 100</td>
</tr>
<tr>
<td>8C</td>
<td>3.49 3.51</td>
<td>3.82 3.86</td>
<td>0.679 0.1453</td>
<td>0.00373 100</td>
</tr>
<tr>
<td>9½D</td>
<td>4.91 4.93</td>
<td>5.37 5.42</td>
<td>0.712 0.1462</td>
<td>0.00283 85</td>
</tr>
</tbody>
</table>

* Resistance at 50°C total temperature, based on ambient of 25°C plus 25°C rise due to heating effect of current. The approximate magnitude of current necessary to produce the 25°C rise is 75% of the “Approximate Ampacity at 60 Hertz”

† Based on a conductor temperature of 75°C and an ambient of 25°C.

Table 3

Shunt Capacitive Reactance Adders for Separation Greater Than One Foot

<table>
<thead>
<tr>
<th>Feet</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0</td>
<td>0.021</td>
<td>0.033</td>
<td>0.041</td>
<td>0.048</td>
<td>0.053</td>
<td>0.058</td>
<td>0.062</td>
<td>0.065</td>
</tr>
<tr>
<td>10</td>
<td>0.068</td>
<td>0.071</td>
<td>0.074</td>
<td>0.076</td>
<td>0.078</td>
<td>0.080</td>
<td>0.082</td>
<td>0.084</td>
<td>0.086</td>
<td>0.087</td>
</tr>
<tr>
<td>20</td>
<td>0.089</td>
<td>0.090</td>
<td>0.092</td>
<td>0.093</td>
<td>0.094</td>
<td>0.096</td>
<td>0.097</td>
<td>0.098</td>
<td>0.099</td>
<td>0.100</td>
</tr>
<tr>
<td>30</td>
<td>0.101</td>
<td>0.102</td>
<td>0.103</td>
<td>0.104</td>
<td>0.105</td>
<td>0.106</td>
<td>0.106</td>
<td>0.107</td>
<td>0.108</td>
<td>0.109</td>
</tr>
</tbody>
</table>

Note: Total Shunt capacitive reactance equals shunt capacitive reactance for one foot plus adder for conductor separation

Shunt Capacity Reactance (line to neutral) in MΩ/conductor for line N miles long

\[X' = \frac{x^{'} + x^{'\prime}}{N} \]
Electrical Characteristics of Copperweld/Copper Conductors

<table>
<thead>
<tr>
<th>CONDUCTOR</th>
<th>RESISTANCE-OHMS PER CONDUCTOR PER MILE</th>
<th>Resistance at 75°C (167°F) CURRENT-APPROX. 75% OF AMPACITY</th>
<th>REACTANCE PER CONDUCTOR PER MILE</th>
<th>GEOMETRIC MEAN RADIUS at 60 Hz</th>
<th>APPROX. AMPACITY† at 60 Hz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D.C.</td>
<td>60 Hertz</td>
<td>D.C.</td>
<td>60 Hertz</td>
<td>ωL at 60 Hz</td>
</tr>
<tr>
<td>7/16" No. 5</td>
<td>0.329</td>
<td>0.272</td>
<td>0.391</td>
<td>0.539</td>
<td>0.0971</td>
</tr>
<tr>
<td>11/32" No. 7</td>
<td>0.389</td>
<td>0.343</td>
<td>0.472</td>
<td>0.553</td>
<td>0.1005</td>
</tr>
<tr>
<td>3/32" No. 9</td>
<td>0.460</td>
<td>0.433</td>
<td>0.573</td>
<td>0.567</td>
<td>0.1040</td>
</tr>
<tr>
<td>7/32" No. 9</td>
<td>0.580</td>
<td>0.546</td>
<td>0.698</td>
<td>0.582</td>
<td>0.1074</td>
</tr>
<tr>
<td>11/32" No. 10</td>
<td>0.725</td>
<td>0.688</td>
<td>0.853</td>
<td>0.595</td>
<td>0.1109</td>
</tr>
<tr>
<td>3/16" No. 10</td>
<td>0.947</td>
<td>0.858</td>
<td>1.056</td>
<td>0.612</td>
<td>0.1121</td>
</tr>
<tr>
<td>7/32" No. 10</td>
<td>1.170</td>
<td>1.015</td>
<td>1.210</td>
<td>0.631</td>
<td>0.1155</td>
</tr>
<tr>
<td>5/32" No. 10</td>
<td>1.394</td>
<td>1.240</td>
<td>1.494</td>
<td>0.645</td>
<td>0.1189</td>
</tr>
<tr>
<td>3/16" No. 11</td>
<td>1.621</td>
<td>1.466</td>
<td>1.721</td>
<td>0.669</td>
<td>0.1221</td>
</tr>
<tr>
<td>7/32" No. 11</td>
<td>1.847</td>
<td>1.692</td>
<td>2.047</td>
<td>0.687</td>
<td>0.1258</td>
</tr>
<tr>
<td>1/4" No. 11</td>
<td>2.074</td>
<td>1.920</td>
<td>2.274</td>
<td>0.715</td>
<td>0.1296</td>
</tr>
<tr>
<td>5/32" No. 12</td>
<td>2.300</td>
<td>2.146</td>
<td>2.490</td>
<td>0.743</td>
<td>0.1338</td>
</tr>
<tr>
<td>3/16" No. 12</td>
<td>2.527</td>
<td>2.372</td>
<td>2.827</td>
<td>0.771</td>
<td>0.1376</td>
</tr>
<tr>
<td>7/32" No. 13</td>
<td>2.753</td>
<td>2.589</td>
<td>3.083</td>
<td>0.799</td>
<td>0.1415</td>
</tr>
<tr>
<td>1/4" No. 13</td>
<td>2.980</td>
<td>2.815</td>
<td>3.280</td>
<td>0.827</td>
<td>0.1454</td>
</tr>
<tr>
<td>5/32" No. 14</td>
<td>3.206</td>
<td>3.041</td>
<td>3.546</td>
<td>0.855</td>
<td>0.1494</td>
</tr>
<tr>
<td>3/16" No. 14</td>
<td>3.433</td>
<td>3.267</td>
<td>3.803</td>
<td>0.883</td>
<td>0.1533</td>
</tr>
<tr>
<td>1/4" No. 15</td>
<td>3.660</td>
<td>3.498</td>
<td>4.060</td>
<td>0.912</td>
<td>0.1572</td>
</tr>
<tr>
<td>5/32" No. 15</td>
<td>3.887</td>
<td>3.724</td>
<td>4.327</td>
<td>0.940</td>
<td>0.1612</td>
</tr>
<tr>
<td>1/4" No. 16</td>
<td>4.114</td>
<td>3.950</td>
<td>4.684</td>
<td>0.969</td>
<td>0.1651</td>
</tr>
<tr>
<td>5/32" No. 16</td>
<td>4.341</td>
<td>4.176</td>
<td>5.041</td>
<td>0.997</td>
<td>0.1690</td>
</tr>
<tr>
<td>1/4" No. 17</td>
<td>4.568</td>
<td>4.392</td>
<td>5.408</td>
<td>1.026</td>
<td>0.1729</td>
</tr>
<tr>
<td>5/32" No. 17</td>
<td>4.795</td>
<td>4.618</td>
<td>5.765</td>
<td>1.054</td>
<td>0.1768</td>
</tr>
<tr>
<td>1/4" No. 18</td>
<td>5.022</td>
<td>4.844</td>
<td>6.122</td>
<td>1.083</td>
<td>0.1807</td>
</tr>
<tr>
<td>5/32" No. 18</td>
<td>5.249</td>
<td>5.070</td>
<td>6.479</td>
<td>1.111</td>
<td>0.1846</td>
</tr>
</tbody>
</table>

* Resistance at 75°C total temperature, based on ambient of 25°C plus 50°C rise due to heating effect of current. The approximate magnitude of current necessary to produce the 50°C rise is 75% of the “Approximate Ampacity at 60 Hertz”

† Based on a conductor temperature of 125°C and an ambient of 25°C.

A 2 ft/s wind speed and Emissivity = 0.5